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Abstract. We aimed to determine the important functional dimensions that may drive forest succession
and community assembly patterns in dry tropical forests. We investigated whether there were patterns in
specific functional strategies during succession in the dry tropical forests of the Florida Keys, whose unique
physical setting includes nutrient-stressed, salt-stressed, and water-limited environments. The study, which
focused on ten traits, determined the leading trait dimensions by which species differentiate from one
another in the study area. The general patterns of trait covariation at individual sites and among species
were analyzed using principal component analysis. Trait niche overlap indices were calculated for all
species sampled across all plots. Evidence for/against likely community assembly processes was tested
using the coefficient of heterogeneity to determine whether variation within and among five key traits was
clustered, random, or evenly distributed across young, old, or all measured forest stands. A combination
of plant architecture, wood density, and three leaf traits (specific leaf area, leaf phosphorus, and leaf nitro-
gen) comprised a key set of functional traits that are important for understanding the community assembly
process in dry tropical forest. Older forest stands were dominated by species with low specific area, low
leaf nitrogen content, dense wood, and deeper and narrower canopies. Trees of old forests had leaves with
lighter carbon isotope composition, suggesting that such individuals were making more efficient use of
scarce water. Tests of trait distributions showed significant clustering across forests of all ages. When indi-
vidual trait distributions in old stands were tested, they displayed either randomly or evenly distributed
traits across trait niche space, indicating that resource partitioning was predominant in shaping commu-
nity composition. Physical traits of trees in young communities are associated with resource acquisitive
strategies, while old communities are dominated by species with traits that enhance survival in environ-
ments defined by competition or chronic resource scarcity.

Key words: competition; dry tropical forest; environmental filtering; Florida Keys; functional traits; niche overlap;
old-growth forest; succession.
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INTRODUCTION

Community assembly represents the outcome
of differing strengths of competitive interactions
and environmental filtering on a pool of

candidate species present in an environment
(Spasojevic and Suding 2012). Competitive inter-
actions among co-occurring species are expected
to produce at least some dissimilarity (Chesson
2000), while environmental filtering should lead
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to high trait similarity among co-resident species
(Mayfield and Levine 2010). Functional similarity
indicates similar resource use strategies among
individuals or species. Species with dissimilar
traits should compete less, resulting in ecologi-
cally distinct resource use strategies among
them. Therefore, the expectation of limiting simi-
larity theory is that co-occurring species will
exhibit less functional similarity than would
occur by chance alone. In contrast, the environ-
mental filtering concept posits that in stressful
environments, species that cannot tolerate the
local stressor will be excluded, resulting in a
reduction in trait variation among species (Navas
et al. 2010). In a few cases, community assembly
processes such as facilitation or plant–pollinator
interactions can also lead to trait similarity
among species in a community (Cavender-Bares
et al. 2009, Kraft et al. 2015). In general, these
ideas have led to a widespread expectation that
trait variation among species is low in regions of
strong abiotic stress and increases in regions
where competitive interactions are stronger (Spa-
sojevic and Suding 2012). Variation among multi-
ple traits can be considered in the context of the
functional niche concept where species are repre-
sented by an n-dimensional hyper-volume in
functional space and trait niche axes are func-
tions or processes associated with different func-
tional attributes (Rosenfeld 2002).

Succession is a sequential change over time in
the relative abundance of dominant species
(Shipley et al. 2006). Functional traits can help to
define a species’ position along a successional
chronosequence, since variation along well-docu-
mented trait spectra (e.g., specific leaf area, maxi-
mum height, or seed mass) has been used to
characterize the leading dimensions by which
species differentiate from one another (Westoby
et al. 2002, D�ıaz et al. 2016). These changes may
reflect functional strategies for reproduction or
resource capture (Baraloto et al. 2012). For
instance, the high relative growth rates of pio-
neer species are associated with high photosyn-
thetic capacity and allocation of leaves high in
the forest canopy to maximize light interception
(Poorter et al. 2006). Moreover, plant traits such
as high specific leaf area and high leaf nitrogen
concentrations allow pioneers to acquire resources
rapidly and dominate the early stages following
the disturbance. As succession proceeds, pioneer

species are often replaced by species with lower
specific leaf area and leaf nitrogen, which grow
more slowly but are more efficient at conserving
internal resources (Bazzaz 1996). However, some
studies have found opposite patterns during sec-
ondary succession, such as specific leaf area
increasing and wood density decreasing during
succession (Lebrija-Trejos et al. 2010, Lohbeck
et al. 2013).
Similarly, variation in plant architecture might

have important implications for resource capture
and survival after disturbance. For example,
interspecific differences in height to crown length
(Ht:CL) represent different strategies of light cap-
ture and diameter at breast height to crown area
(dbh:CA) and height to diameter at breast height
(Ht:dbh) are associated with structural stability,
mechanical strength, and crown support (Sterck
and Bongers 1998, King et al. 2006). When
exposed to hurricanes or other types of wind-
storms, variation in such architectural traits may
affect the likelihood that breakage will be limited
to branches rather than the main stem (Zimmer-
man et al. 1994). Basal diameter increases with
wind exposure in trees of similar height (King
1996), which is particularly relevant in the Flor-
ida Keys given the vulnerability to damage
exhibited by large individuals of several early-
successional species during Hurricane Andrew
in 1992 (Ross et al. 2001). High proportions of
multiple-stemmed trees are sometimes prevalent
in dry tropical forest (Dunphy et al. 2000) and
may be related to environmental stresses brought
on by limited nutrients, drought, or excess salts,
or a consequence of periodic hurricanes that may
limit height growth.
Dry tropical forests of the Florida Keys differ

from many other forests of their kind due to the
wide range of physical limitations they face,
including nutrient-stressed, salt-stressed, and
water-limited environments (Bussotti et al. 1995,
Redwine 2007) and frequent disturbance by
storms and hurricanes. The organic soil layer is
typically thin, causing trees to depend in varying
degree on groundwater as their water source
(Sternberg et al. 1991). However, in the upper
Florida Keys even the water closest to the surface
can be brackish, because the coralline limestone
that forms these islands is extremely permeable,
allowing groundwater to mix freely with sur-
rounding seawater (Ross et al. 2003). Trees may
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become drought-stressed when fresh soil water
is exhausted, and thus, our hypothesis is that
community assembly processes in this environ-
ment are strongly affected by the ability of differ-
ent species to compete for scarce water and
nutrients.

Previous work suggests that the successional-
morphological changes in dry tropical forest
involve trade-offs between traits enhancing
growth in early-successional species—character-
ized by high specific leaf area, low wood density,
and high concentrations of leaf nutrients (consis-
tent with the findings of King et al. 2006)—and
traits related to survival in late-successional spe-
cies, such as long-lived leaves and high allocation
to structural compounds, similar to the findings
of Navas et al. (2010). While leaf habit alone is
sometimes insufficient to distinguish plant func-
tional groups in dry tropical forests, these group-
ings may be identified through the use of a
database that includes other functional traits rel-
evant to acquisition and use of resources (Powers
and Tiffin 2010). This paper seeks to identify pat-
terns of expression of important traits (particu-
larly stem, leaf, and architectural traits) along
successional gradients in dry tropical forests of
the Florida Keys. To our knowledge, this is the
first study to examine tropical dry forest succes-
sion using the combined approach of measuring
changes in relative abundance of species along a
chronosequence of forest patches and simultane-
ously measuring a set of architectural traits
which correspond to resource acquisition
strategies.

In this study, we assessed 10 traits in 26 spe-
cies found in dry tropical forest stands in the
Florida Keys to address three primary research
questions: (1) What are the important trait niche
axes among species in dry tropical forest? (2) Is
there any pattern in community-weighted mean
traits during the successional process in this for-
est? and (3) What does the important trait niche
axes information reveal about the underlying
mechanisms that may drive species assembly
during forest succession? To address Question
1, we used multivariate analysis to identify a
small number of orthogonal trait axes at both
species and community levels and to define the
level of evidence present to define trait niche
axes. To address Question 2, we tracked

community-weighted mean (CWM) traits along
the successional gradient to determine if such
pattern was associated with changes in environ-
mental conditions during the successional pro-
cess. To address Question 3, we inspected
patterns in species niche overlap to evaluate
how community assembly processes relate to
forest succession in these forest stands. Early-
successional species in recently disturbed areas
experience severe and distinct environmental fil-
tering, which is likely to structure early-stage
development. Environmental conditions (e.g.,
greater soil depth, or higher moisture or nutri-
ent availability) may become less stressful over
time, allowing density-dependent processes
such as competition to dominate the later stages
of succession. Therefore, we expect younger
stands and dominant early-successional species
to show similar trait values (higher niche over-
lap), but as community development proceeds,
trait values among coexisting species should
become more dissimilar (lower niche overlap).

MATERIALS AND METHODS

Study area
A 15-km stretch of continuous forest in north-

ern Key Largo, including portions of Crocodile
Lakes National Wildlife Refuge and Key Largo
Hammocks Botanical State Park, comprises the
most extensive remaining example of dry tropi-
cal forest in southern Florida (Fig. 1). This forest
features a diverse mixture of deciduous and
evergreen tree species that are predominantly
West Indian in origin. Soils are organic and
rarely exceed 30 cm in depth. Elevations range
from 0 to 5 m above sea level. Mean annual tem-
perature is 25.1°C, and mean annual precipita-
tion is about 1200 mm (Ross et al. 2001).
Although occasional lightning fires and frequent
windstorms are part of the disturbance regime,
the ecological history of these hammocks is
strongly influenced by clearance of many stands
for farming early in the 20th century, and fires
associated with these activities. Aerial pho-
tographs indicate that a large portion of the for-
est has been under cultivation or affected by
roads, prospective residential development, oil
exploration, or military use since that time (Ross
et al. 2001).
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Fig. 1. A 15-km stretch of continuous dry tropical forest in North Key Largo with forest age classes and loca-
tion of plots. Trait data were collected from 20 9 20 m plots established, five in young forest stands (20–30 yr),
and five in old forest stands (>100 yr). The year that each stand was cleared was estimated on the basis of the
appearance of the site on black-and-white aerial photographs.

 ❖ www.esajournals.org 4 April 2019 ❖ Volume 10(4) ❖ Article e02719

SUBEDI ET AL.



Study design
We used two distinct forest sampling

approaches in this study. The first sampling
approach was initiated in 2014–2015 to address
research Questions 1 and 3 (plot-based data).
Trait data were collected from ten 20 9 20 m
plots: five in young forest (20–30 yr since
abandonment, based on serial aerial pho-
tographs), and five in old-growth stands,
believed to be 100 yr old or more based on aerial
photographs (Fig. 1; see the next paragraph for
more explanation on stand age). By collecting
trait information on 3–5 individuals (mature
trees <5 cm dbh) of each species present in each
of these plots, we could employ linear mixed
models and principal component analysis (PCA)
to evaluate trait–forest type relationships for
young and old sites, and enhance the strength of
our inferences about correlations between traits
and successional processes.

The second sampling approach was employed
to address Question 2. Forest patches were sam-
pled using transects 60–100 m in length in 23
separate stands (hereafter transect-based data),
which were established in 1994 by Ross et al.
(2001). In our nested belt sampling design, we
recorded species and diameter at breast height
(dbh at 1.45 m height) of all trees rooted within
1 m (stems 1.0–9.9 cm dbh), 2 m (stems 10.0–
24.9 cm dbh) or 5 m (stems ≥25 cm dbh) of the
center line of the transect. Then, we summarized
tree species composition, basal area, and density
of each transect. Stand age of each transect was
obtained from earlier work by Ross et al. (2001)
and Diamond and Ross (2016), which was esti-
mated on the basis of historical photographs sup-
plemented by reliable anecdotal information
from each site. These stands have not experi-
enced catastrophic disturbance after 1985 and are
part of the Crocodile Lakes National Wildlife
Refuge and Key Largo Hammocks Botanical
State Park. If photographs from all years were
not available, the date of stand initiation was
estimated as the midpoint between the most
recent year a stand exhibited full canopy cover
and the latest year when it lacked tree cover. The
successional status of tree assemblages in each
transect (Appendix S1: Table S1) was already
known from a previous study (Ross et al. 2001),
in which abundance-weighted species means
were determined from a 2013 calibration data set

in which stand ages were estimated as described
above. In the Ross et al. (2001) study, stands with
no evidence of clearing or fire as far back as the
1926 photograph were arbitrarily assigned an
age of 100 yr. To address Question 2, we used
transect-based data to examine correlations with
species trait data.

Trait selection and measurement
The present study focused on ten traits that we

expected to be especially important in dry tropi-
cal environments. Six of these traits are either
direct measurements of plant tissues (wood den-
sity, specific leaf area, leaf nitrogen content, and
leaf phosphorus) or indicators of a leaf’s physio-
logical function (the molar ratio of nitrogen/
phosphorus and carbon stable isotope composi-
tion). Four of the ten measured traits describe
architectural allometrics of the trees.
Due to its role in determining resistance to

wind damage during storm events, and survival
from intense droughts, wood density may be an
important functional trait in dry tropical forest
species in South Florida. Specific leaf area, leaf
nitrogen content, and leaf phosphorus are corre-
lated with primary productivity and nutrient
cycling in many ecosystems (Aerts and Chapin
1999). Molar ratios of nitrogen and phosphorus
in leaf tissues (leaf N:P) are often indicators of
nutrient limitation (Koerselman and Meuleman
1996, Subedi et al. 2012). The carbon stable iso-
tope ratio (13C/12C), expressed as d13C, is an indi-
cator of the strength of the diffusive gradient of
CO2 during leaf gas exchange and reflects intrin-
sic water use efficiency. Water use efficiency
defines the leaf-specific trade-off between carbon
gain and water loss during the interacting pro-
cesses of photosynthesis and transpiration (Far-
quhar et al. 1982). These six characteristics of
wood and leaves have been implicated as rele-
vant to successional processes in previous stud-
ies (Bhaskar et al. 2014), but not many studies
have used a shared sampling design that explic-
itly tested which ecological scale (site, species, or
individual) explained the variability of the mea-
sured traits (Auger and Shipley 2013).
The remaining four traits, collectively described

as “architectural,” have been implicated in other
studies as indicators of important life history
strategies of dry tropical forest trees, for example,
light capture strategies (Bohlman and O’Brien
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2006). We tested four architectural traits: the
ratios of diameter at breast height to crown area
(CA:dbh), height to diameter at breast height
(Ht:dbh), and height to crown length (Ht:CL),
and the frequency of multiple-stem form.

Methods for measurement of plant traits fol-
lowed standard methods (P�erez-Harguindeguy
et al. 2013). Structural traits (height, height to
crown, diameter at breast height, and crown
dimensions) were determined for all trees greater
than 1 cm diameter at breast height (dbh, mea-
sured in cm) in the ten plots. Total height (Ht, the
shortest distance between the upper boundary of
the main photosynthetic tissues on the plant and
ground level, measured in m) and height to crown
(first branch from the ground, measured in m)
were measured using a telescoping height pole.
Two crown dimensions (the longest and its per-
pendicular) were measured using measuring
tapes, and dbh was measured using a tree caliper.

Assuming an elliptical crown shape (Sah et al.
2004), crown area (CA, m2) was calculated as
CA = p((L1/2) + (L2/2)), where L1 and L2 are the
length at its widest point and the perpendicular
crown extent at the same height, respectively.
Crown length (measured in m) was calculated as
the difference between total height and height to
crown. Specific leaf area, leaf chemistry (leaf
nitrogen, leaf phosphorus, and d13C), and wood
density were determined for 3–5 individuals of
each species present in each plot. In rare cases in
which there were fewer than three individuals of
the species in the plot, we collected from trees
near the plot boundary in the same stand. For
analytical purposes, nutrient concentrations were
expressed per unit leaf area (lg/cm2). Six recently
expanded sun leaves were sampled per tree, or
in cases of understory species, we collected the
most illuminated leaves on the plant. Specific leaf
area (leaf area per unit mass) was calculated
using freshly collected leaves without petioles
(entire leaf for species with simple leaves, leaflets
for species with compound leaves); area was
measured with a leaf area meter (LI-3000C), fol-
lowed by oven-drying at 70°C for 72 h before
weighing. Wood density was determined for
three 1–2 cm diameter branch samples per tree
and calculated as the ratio of the oven-dried (at
100°C) mass of the bark-removed wood sample
(30 cm long) divided by the mass of water dis-
placed by its fresh (green) volume. All the

individual trait values for each species were cal-
culated as the average of the individuals within a
plot.

Statistical analyses
Principal component analysis was used to

identify a small number of orthogonal traits that
defined trait niche axes at both species and com-
munity levels. For species-level analyses (Ques-
tions 1 and 3), all measured traits were included.
At the species level, PCA combined mean trait
values for 26 species in ten permanent plots (five
in young and five in old forest) which covered
about 82% of the total tree species occurred in
the whole forest. At the community level, PCA
was performed using CWM traits in ten perma-
nent plots. Community-weighted mean of each
trait was calculated for each plot as a weighted
average of species traits, with weightings based
on species’ relative abundance (trees <1 cm dbh)
in each plot (the same as transect data; see
below). We also tested weighting CWM traits by
basal area, but the results were similar, and are
not discussed further.
To address Question 2, we examined correlations

between CWM traits and age of the stands repre-
sented by the 23 transects. Community-weighted
mean of each trait was calculated for each transect
as a weighted average of species traits, average
trait value from plot with weightings based on spe-
cies’ relative abundance (trees < 1 cm dbh) in each
transect (Hulshof et al. 2013):

CWMt ¼
X

s
li fi

where t = transect, s = species, and li and fi are
the mean trait value and relative abundance of
the species i (proportion of total tree density). To
assess trends identified via CWM, it is necessary
to consider whether trait variation resides pri-
marily at the site, species, or individual level.
Linear mixed models were used to determine the
proportion of the total variance expressed across
these three levels among the traits we measured
(Table 1). For each species, the total number of
individuals sampled in the linear mixed model
analyses varied from 36 to 45. The models were
fit using the varcomp function of R (R Core Team
2015) with maximum-likelihood estimation, and
site, species, and individual tree were specified
as random variables for each trait.
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Niche overlaps (NOs) and null models were
computed using the R script provided by Geange
et al. (2011). For each trait, a distribution was cal-
culated using a kernel estimator (Mouillot et al.
2005), which is a density function that assumes
measurement error around each data point and
uses a smoothing function to estimate a distribu-
tion of all data for a given trait and community.
Overlap is represented as the integral of the
intersection of the species’ respective kernel
curves when overlaid on one another. The spe-
cies kernels were then used to estimate pairwise
NOs in trait space for all the coexisting species.
Overlap indices were calculated for three data
sets: for all species sampled across the ten plots,
and separately for each successional category
(young and old). Maximum variance occurs
when all NOs are either 0 or 1. To test the com-
munity assembly processes, a test statistic (g),
that is, the proportion of maximum variance (i.e.,
the coefficient of heterogeneity), was calculated
to determine if the pattern in the data is random
(the null model), clustered (g near 1), or evenly
spaced (g near 0; Geange et al. 2011). If there are
i species and t traits, each trait (as a niche axis)
has x = (i � 1)/2 niche overlap values, repre-
sented as x1, x2,. . ., xt, with �x and s2 representing
mean niche overlap and variance.

g ¼
X s2

�x 1� xð Þ
Once g is calculated for each niche axis, the

average of g over the all trait niche axes gives an

overall measure of clustering vs. regularity, or
even spacing (Geange et al. 2011). All statistical
analyses were carried out using R package ver-
sion 3.4.1 (R Core Team 2015).

RESULTS

Variation in traits across the ecological scales
For the nine traits for which variances at the

site, species, and tree (intraspecific) levels were
all estimated (Table 1), linear mixed models indi-
cate that traits varied dramatically across scales.
Overall trait variation attributable to site was
very low, exceeding 2% for only three architec-
tural traits, in which site variation ranged from
4.24% to 19.22%. Variation was concentrated at
the species level in five of the six morphological/
chemical variables (specific leaf area, wood den-
sity, leaf nitrogen, leaf N:P, and d13C, above 80%).
For five of the nine traits, intraspecific variation
among trees occupying the same stand was
<20%, while intraspecific trait variation exceeded
40% in leaf phosphorus as well as three architec-
tural traits.

Correlation among species traits
In the species-level analysis of functional traits,

the first three axes of the PCA of 10 traits
explained 60% of the total variation and eigen-
values >1 (Table 2). Three traits (specific leaf
area, wood density, Ht:CL, and multiple stem)
were strongly associated with the first axis of the
PCA. Leaf phosphorus was strongly associated
with the second axis of the PCA, while leaf nitro-
gen loaded highly on the third PCA axis. Thus,
the first PCA axis combined stem, leaf, and archi-
tectural traits, while the second and third axes
were strongly related to leaf nutrient concentra-
tions. On the basis of the contribution of traits to
the first three principal components, specific leaf
area, wood density, leaf nitrogen, leaf phospho-
rus, multiple stem, and Ht:CL shape the most
important trait niche axes among the species
found along the successional gradient.
In the community-level analysis of CWM

traits, the first two principal component axes
explained over 90% of the total variation in the
sampled data (64.7% of variability in PC1 and
25.6% in PC2; Fig. 2; Appendix S1: Table S2). As
in the species analysis, traits associated with Axis
1 were specific leaf area, wood density, and Ht:

Table 1. List of traits and percentage of their variation at
three different scales (site, species, and intraspecific).

Trait Unit Site Species Intraspecific

Specific leaf area, SLA cm2/g <1.0 90.37 9.2
Wood density, WD g/cm3 1.9 80.86 17.2
Leaf phosphorus, TP lg/g <1.0 20.95 78.6
Leaf nitrogen, TN % <1.0 98.88 <1.0
Leaf stable carbon
isotope ratio, d13C

& <1.0 96.90 3.0

Leaf N:P % <1.0 95.94 3.06
Crown area:diameter at
breast height, CA:dbh

m2/cm 19.2 35.41 45.3

Height:diameter
at breast height, Ht:dbh

m/cm 6.8 46.58 46.5

Height:crown length,
Ht:CL

m/m 4.2 12.4 83.2

Note: Trait abbreviations and measured units are
presented in the first and second columns, respectively.
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CL, as well as leaf nitrogen and CA:dbh. Sites
were grouped based on stand age along the first
principal component axis, with young and old
sites well separated on the x-axis. However, old
sites grouped closely together, while young sites
were scattered along the y-axis, which repre-
sented leaf phosphorus, d13C, percentage of mul-
tiple stem, and Ht:dbh (Fig. 2).

Pattern of trait variation during the succession
Linear regression analyses between CWM

traits and stand age showed significant trends
along the successional gradient for all traits
except leaf phosphorus and Ht:dbh (Fig. 3). The
CWM of specific leaf area, leaf nitrogen, leaf N:P,
d13C, and Ht:CL decreased with increasing stand
age, while wood density, multiple-stem fre-
quency, and CA:dbh increased significantly from
young to old sites (Fig. 3).

Niche overlap between species in important
functional traits

Since the species-level PCA showed that speci-
fic leaf area, wood density, leaf phosphorus, leaf
nitrogen, leaf N:P, multiple stem, and Ht:CL
formed the most important niche axes and
explained most of the variation among species,
we based our analyses of niche overlap on those
traits. It is noted that inclusion of multiple stem
and leaf N:P traits did not show any significant
results and did not change our overall results of

species overlap for any three analyses, that is, all
plots, young, and mature; thus, we excluded
those traits in community assembly analysis.
Analysis of the five traits across 26 tree species
considered in the Key Largo dry tropical forest
yielded an average local realized niche overlap
of 0.39 (0 is no overlap while 1 is complete over-
lap; Appendix S1: Tables S1 and S3). Simarouba
glauca was a conspicuous outlier among its asso-
ciates, exhibiting a niche overlap of only 0.16.
Reynosia septentrionalis Urb., Drypetes lateriflora
(Sw.) Krug & Urb., Ficus citrifoliaMill., and Calyp-
tranthes pallens (Poir.) Griseb. were also notably
dissimilar from their associates. Species with
high mean NOs were Sideroxylon salicifolium (L.)
Lam., Swietenia mahogani (L.) Jacq., Metopium tox-
iferum (L.) Krug & Urban, and Coccoloba diversifo-
lia Jacq (Appendix S1: Table S1).
To answer whether resource acquisition (in

response to environmental stress as exemplified
by trait convergence) or resource partitioning
(in response to competition as exemplified by
trait differentiation) predominates in shaping
community composition, the proportion of
maximum variance (i.e., the coefficient of

Table 2. Principal component analysis results based
on 26 species and their mean trait value.

Trait
Comp. 1
(24%)

Comp. 2
(22%)

Comp. 3
(14%)

Specific leaf area 0.46 0.19 <0.01
Wood density �0.45 0.29 �0.16
Leaf phosphorus �0.15 0.53 �0.31
Leaf nitrogen 0.18 0.15 �0.65
Leaf stable carbon
isotope ratio

0.11 �0.26 <0.01

N:P 0.21 0.59 <0.01
Crown area:Diameter
at breast height

�0.12 0.30 0.35

Height:Diameter
at breast height

�0.14 0.25 �0.29

Crown length 0.50 <0.01 <0.01
Multiple stem �0.42 0.12 �0.25

Notes: Trait contribution to the first three components con-
tributed by each factor. Percentage of variation explained by
each component is provided in parentheses.

Fig. 2. Community-weighted trait bi-plot for princi-
pal component analysis of Key Largo dry tropical for-
ests. The ordination is based on community-weighted
mean traits, with traits weighted for each species by its
relative abundance in the community. Trait abbrevia-
tions are given in Table 1.
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heterogeneity) among species was calculated
for the five traits evaluated above (Table 3).
When all plots and traits were considered
together, species displayed significant cluster-
ing across niche space. When mean niche over-
lap was analyzed separately for each trait

across all plots, significant clustering was also
observed in three traits, that is, specific leaf
area, wood density, and leaf phosphorus, but
no departures from random expectations were
observed for leaf nitrogen and Ht:CL. Similarly,
when niche overlap was analyzed separately

Fig. 3. Community trait shifts during forest succession. Each point represents one of the 23 sites in a 15-km
continuous secondary forest in north Key Largo. The dependent variables are the community-weighted mean
trait values of the vegetation at that site. The linear regression line is shown only for traits exhibiting a significant
pattern (P < 0.05).
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for young stands, species displayed significant
multivariate clustering across trait niche space,
and in this case, all five individual traits fol-
lowed suit (P-value <0.05). In contrast, when
niche overlap was calculated for old plots only,
species were more evenly distributed across
trait niche space than expected based on the
null model. Community assembly patterns for
individual traits in old plots differed from the
null model in only one trait (leaf nitrogen),
which was more evenly distributed than
expected, that is, exhibited significant niche dif-
ferentiation (Table 3).

DISCUSSION

Our investigation demonstrated that a combi-
nation of plant architecture (Ht:CL), wood den-
sity, and leaf traits (specific leaf area, leaf
phosphorus, leaf nitrogen) comprises a key set of
functional traits that are important for under-
standing succession and the community assem-
bly process in dry tropical forest of the Florida
Keys. The patterns in community-weighted
mean traits indicate that species experience
stressful conditions during the dry early stages
of succession and drought stress may gradually
decrease as succession proceeds. A strong clus-
tering pattern in traits of young communities
suggests that environmental filtering is impor-
tant in the early stages of succession, while a sig-
nificant niche differentiation pattern in older
communities suggests that community assembly
was strongly influenced by competition for limit-
ing resources in the late stages of succession.

Major trait niche axes (Question 1)
The PCA results showed that principal compo-

nents of multiple niche trait axes represent
important species differences across the forested
mosaic that we sampled in Key Largo (Table 2,
Fig. 2). Expectations based on the leaf economics
spectrum concept are that leaf nitrogen and
phosphorus contents will be strongly positively
correlated with specific leaf area for tree species
found in dry tropical forests (Wright et al. 2004).
Typically, low leaf nitrogen and low specific leaf
area are characteristic of species with long-lived
leaves, whereas high leaf nitrogen and high
specific leaf area are associated with ephemeral
leaves that live less than one year (Wright et al.
2004).
The sampling approach we employed allows

for differentiation among site-specific and spe-
cies-specific patterns in morphological, physio-
chemical, and architectural characteristics.
Results indicate an orthogonal relationship
among specific leaf area, leaf phosphorus, and
leaf nitrogen (Table 2), with each weighted
strongly on a different PCA axis, indicating that
these traits are not strictly correlated at the stand
level in the regional mosaic of forest patches
occurring in Key Largo. These results suggest
that the way that chemical traits vary is not uni-
versal, and that observed patterns of variation
may provide unique insight into how specific
resource limitations are operating in each com-
munity. Our results, therefore, reflect the differ-
ent roles these traits play in dry tropical forest,
where species response to seasonal resource limi-
tation (water and nutrients) is critical.

Table 3. Measures of the evenness vs. clustering of all 23 transects, young stands, and old stands of Key Largo
tree species across niche space incorporating five functional traits: (1) SLA, (2) WD, (3) TP, (4) TN, and (5) Ht:
CL, with the average coefficient of heterogeneity over the five traits giving an overall measure of clustering vs.
even spacing.

Community Test Overall SLA WD TP TN Ht:CL

All plots Evenness ns ns ns ns ns ns
Clustering <0.01 0.01 0.02 0.001 ns ns

Young Evenness ns ns ns ns ns ns
Clustering <0.01 0.02 0.03 0.03 0.04 0.02

Old Evenness 0.03 ns ns ns 0.02 ns
Clustering ns ns ns ns ns ns

Notes: Statistically significant evenly spaced or clustered distributions, as identified by null model tests, are indicated by
P-values (P < 0.05), while non-significant P-value is presented as ns. SLA, Specific leaf area; WD, Wood density; TP, Leaf
phosphorus; TN, Leaf nitrogen; Ht:CL, Height:Crown length.
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In Florida Keys’dry tropical forest, community
assembly appears to be driven mainly by spe-
cies-level responses to light, nitrogen, and fresh-
water availability, and species–individual
interactive responses to phosphorus. Previous
investigations demonstrate that dry tropical for-
ests in the Florida Keys appear to be water- and
nutrient-limited systems (Redwine 2007). We
expected a strong negative correlation between
specific leaf area and wood density, as slow-
growing species in water-limited environment
with low specific leaf area typically allocate pho-
tosynthate to the production of dense wood
(Reich et al. 2003, Baraloto et al. 2010). The rela-
tionship between these important traits was sup-
ported by results of the correlation analysis at
the forest stand level (Appendix S1: Table S4).
Interpretation of wood-related traits may need to
account for a few different trait axes as coastal
forests in the Florida Keys are frequently dis-
turbed by storms and hurricanes. While the
wood density spectrum was explored in this
study, other potentially relevant traits of wood
were not. For example, light wood may be either
soft or brittle (Chave et al. 2009), and variation in
this trait spectrum may contribute to a species’
inherent capacity to resist windstorm damage
and/or support multiple stem or spreading cano-
pies; a significant negative correlation of wood
density with Ht:CL and a positive correlation
with CA:dbh were observed (Appendix S1:
Table S4). Moreover, multiple-stem form is com-
mon in the Florida Keys dry tropical forest and is
a characteristic feature of Caribbean dry forests
(Dunphy et al. 2000). The factors most likely to
be responsible for the multiple-stem species may
include prolonged drought and salt stress, and
phosphorus limitation as well as periodic hurri-
cane disturbances in coastal environment (Dun-
phy et al. 2000, Bellingham and Sparrow 2009).
Therefore, our architectural traits results indicate
that future studies investigating biomechanical
properties of tree species in this forest may be
particularly useful in clarifying relationships
between wood properties and canopy architec-
ture/stability (Fournier et al. 2013).

Prior knowledge of intra- and interspecific trait
variation is essential for studying community
assembly patterns (Albert et al. 2010, Messier
et al. 2010). In some cases, variation occurring at
different levels may affect the results obtained

and the conclusions drawn for community
assemblages (Messier et al. 2010). The orthogo-
nality between key traits with relatively high
interspecific variation observed in this study
(Tables 1 and 2) indicates that species may
respond to different selective pressures of the
environment through these functional traits. The
finding that the amount of intraspecific variation
is negligible in key traits compared to interspeci-
fic variation indicates that species differ
distinctly from one another in these traits. There-
fore, intraspecific variation would have little
effect on the outcome of assembly rules deter-
mined on the basis of species mean trait values in
this forest. On the other hand, the high intraspe-
cific variation observed in this study for a few
traits, particularly in Ht:CL and leaf phosphorus
(Table 1), indicates the importance of individual
variation in acquiring resources, mainly light
and phosphorus within and across the sites,
thereby reflecting trees’ plastic responses to the
environments to which they are exposed (Sultan
2000).
The PCAs help to determine important niche

axes that correlate strongly with aspects of
whole-plant performance. The presence of com-
plex interactions between traits and species com-
position indicates that no single trait adequately
captures community dynamics, and highlights
the importance of trait selection that captures
multiple niche axes for the exploration of com-
munity assembly mechanisms. Therefore, a com-
bination of plant architecture, stem, and leaf
traits comprises key functional niches that are
important for understanding the community
assembly process in dry tropical forest. Different
assembly processes may be operating simultane-
ously along these distinct niche axes (Spasojevic
and Suding 2012); therefore, an understanding of
the functional roles of each of the traits under
study is important in interpreting relationships
between niche axes and assembly processes.

Pattern of trait variation across the successional
gradient (Question 2)
The shifts in CWM traits along the succes-

sional gradient in dry tropical forest (Fig. 3) rep-
resent responses to stress. In dry forest,
succession may be driven by an increase in water
availability over time (Pineda-Garc�ıa et al. 2013).
In such forests, species experience stressful
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conditions during the dry and hot early stages of
succession and drought stress may gradually
decrease toward later stages of succession as soils
build up and canopy cover increases (Lebrija-Tre-
jos et al. 2010, Lohbeck et al. 2013). Previous
studies in the Florida Keys have shown that
canopy trees undergo a gradual change in leaf
traits from deciduous (short-lived leaves) to ever-
green (long-lived leaves) by the time of stand
maturity (Ross et al. 2001, Redwine 2007). In the
young forest, trait values related to drought tol-
erance (less negative d13C) and optimal light
acquisition (high specific leaf area and leaf nitro-
gen) prevailed (Fig. 3), reflecting an acquisitive
strategy to maximize photosynthesis (Poorter
et al. 2009) when water is available and to mini-
mize water loss and respiration costs during dry
periods. In old forests, the evergreen leaf habit,
which is typically accompanied by lower nutri-
tional values (carbon–nitrogen ratio), slow
growth, and conservative strategies (low specific
leaf area and leaf nitrogen, and increased struc-
tural toughness), appears to be a strategy to sur-
vive in nutrient-poor soils (Givnish 2002). In
order to maintain maximum leaf area year-
round, the evergreen species that occupy older
forests have high wood density (Fig. 3), which
allows them to resist drought stress by
maintaining high water potentials during the dry
season (Westoby et al. 2002). The pattern in
water use economy we observed, that is, a
decrease in leaf d13C across the successional gra-
dient (Fig. 3), nevertheless suggests that mois-
ture availability in old-growth forests is higher
than in young stands. A similar study in south-
ern Mexico dry tropical forest found mixed pat-
terns in traits during succession (Lebrija-Trejos
et al. 2010, Lohbeck et al. 2013), demonstrating
inconsistencies between acquisitive and conser-
vative trait patterns. However, our findings
clearly show that acquisitive traits decreased
while conservative traits increased with succes-
sion, as predicted.

Our data also suggest that as a result of differ-
ences in light demand, variation in architectural
traits may be important for resident species in
the Key Largo forest. High Ht:CL was observed
in young communities (Appendix S1: Table S4)
that are dominated by shade-intolerant early-
successional species. In contrast, shade-tolerant
species in old stands (late-successional species)

tend to have wider crowns (high CA:dbh;
Appendix S1: Table S4) that increase interception
of diffuse light. Early-successional species in
young stands are therefore must grow quickly,
overtopping neighbors, and attaining or main-
taining occupancy of the canopy following gap
formation that results from storm and hurricane
disturbance (Diamond and Ross 2016). As in our
study, others have also found that early-succes-
sional species do so by developing both a slender
stem (high Ht:dbh) and a shallow crown (high
Ht:CL; Poorter et al. 2006). In contrast, species in
old stands dominated by shade-tolerant under-
story species that regenerate in shaded environ-
ments may not attain great height, but have wide
crowns that allow them to intercept light over a
large area. Similarly, our results showed that
multiple-stem species were more frequent in
mature stands. Multiple-stem characteristic in
trees may be associated with available resources
(Bellingham and Sparrow 2009) and/or wind dis-
turbances (Van Bloem et al. 2006). Soil moisture
is expected to increase with stand age in these
forests as both soil depth and canopy cover
increase with stand age. In contrast, studies in
dry tropical forest (Puerto Rico) showed that soil
moisture and nutrients only play a secondary
role in selecting for multiple-stem trees, as hurri-
cane winds appear to serve as a filter promoting
smaller multiple-stem species over long periods
(Van Bloem et al. 2006). Therefore, our observa-
tion of higher frequency of multiple-stem species
in mature forest may also be explained by the
legacy of hurricane winds, as most of the species
studied (similar to Caribbean dry tropical forest)
sprout prolifically after wind breakage (Van
Bloem et al. 2003, 2006).
Therefore, given long seasonal drought

(4–7 months) in the Florida Keys, young stands
experience extreme drought stress as well as
more exposure to wind disturbances due to their
shallow soils and open canopies, favoring species
with acquisitive strategies, that is, short-lived
leaves, high nutrient values, shallow crown, and
slender stems. In contrast, in old stands, where
soils are deeper and insolation is reduced by a
more closed forest canopy, nutrient availability
tends to be reduced, water availability remains a
challenge, and species with conservative strate-
gies bear long-lived leaves with low leaf nitrogen
concentrations and higher wood density.
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Community assembly patterns (Question 3)
Overall, a significant trait clustering pattern

(Table 3) suggests strong environmental filtering
of trait values. Such trait similarity supports the
expectation that differences in local environment
influence which trait values, filtered out of the
regional pool, perform best under local condi-
tions. At a finer scale, our results showed that the
patterns of trait niche overlap in young and old
stands differed. The observed trait similarity in
younger stands provides strong evidence that
environmental filtering is important in the early
stages of succession. Convergence toward trait
values that maximize resource acquisition is the
dominant assembly process in early stages of for-
est succession. In contrast, a significant niche dif-
ferentiation pattern in older communities
suggests species differences that lessen competi-
tion among them, in which resource competition
acts to constrain local neighborhoods to certain
traits or trait combinations, producing lower
niche overlap than expected by chance. On the
basis of trait patterns, filtering at this end of the
gradient was likely the result of competition for
limiting resources, water and nutrients (high
wood density, low leaf nitrogen; Fig. 3). Our
results appear to confirm a general tenet of com-
petition theory identified by Chesson (2000)
which predicts some level of limitation on func-
tional similarity among co-occurring species as
abiotic stresses, competition, or pest pressures
increase. In the case of the Florida Keys’dry trop-
ical forests, competition for light and nutrient
limitation both clearly increases as forest stands
age through a successional process (Redwine
2007). Water supply may increase marginally as
soils develop, although increased demand
associated with larger trees may be offset by spe-
cies-based coping strategies (as indicated by
CWM of d13C which suggests decreased water
use efficiency of older stands). In any event,
severe water stress is clearly occurring for
weeks–months each year in all dry tropical forest
types in the study area (Ross et al. 2003).

Additional insights about changes in the com-
munity assembly processes can be drawn from
individual trait patterns across the environmen-
tal gradient. Overall, environmental filtering
plays an important role in this forest, as only the
best suited species in the local environment are
successful. Our results showed a significant

clustering pattern in three traits (specific leaf
area, wood density, and leaf phosphorus) across
all stands. Limiting conditions, mainly water and
nutrients, are likely to determine the success of
tree species in becoming established in Florida
Keys’ dry tropical forests, as indicated by their
functional traits (low specific leaf area, high
wood density, and less leaf phosphorus). A
strong clustering pattern suggests an intense
pressure for a common resource use strategy to
acquire limiting resources regardless of forest
age, where productivity is limited, as in Florida
Keys forests (Ross et al. 2003). Similarly, a signifi-
cant clustering pattern in all key traits in young
communities suggests that dominant species in
young forests have similar leaf, stem, and archi-
tectural traits. As hypothesized, the early-succes-
sional stands in our system were dominated by
species with traits that control extreme water and
nutrient stress. Many of these species are capable
of photosynthesizing and accumulating biomass
at high rates (high specific leaf area and leaf
nitrogen) during the wet season, and subse-
quently increase dry-season survival by drop-
ping leaves, that is, mostly deciduous species
(Appendix S1: Table S1).
In older communities, however, leaf nitrogen

showed significant niche differentiation, while
overlaps in the other four traits we tested were
not different from expectations of the null model.
The observed niche differentiation in leaf nitro-
gen among species may reflect spatiotemporal
differences in preferential uptake in nitrogen
through different sources such as microorgan-
isms, soil, and/or groundwater (Beyschlag et al.
2009). Leaf nitrogen may not be directly associ-
ated with nutrient availability per se, which may
depend on other factors such as moisture avail-
ability and other nutrient supply (Wright et al.
2001). Therefore, the ability of species to access
other resources such as water and phosphorus
may also play a significant role in accessing
nitrogen. The concentration of variation of leaf
nitrogen (almost 99%) at the species level
(Table 1) may indicate the conservative nature of
leaf nitrogen within species. A previous study in
this forest suggests that symbiotic associations
with microorganisms are widespread (Redwine
2007). Similarly, differences in rooting depth and
physiology may affect tree species’ capacities to
access water from soil and groundwater.
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Considering the nature of the karst substrate and
very thin soil layer in the study area, some tree
species might use groundwater, particularly dur-
ing the long dry season (Ewe et al. 1999). The
depth of the water table below the rock surface,
ranging from a few cm to 4 m, may not prevent
the majority of tree species from reaching the
groundwater. Fine root placement and ability of
species to access freshwater at small scale could
also be occurring at different depths leading to
differential access to nutrient supplies (Hooper
and Vitousek 1997). However, groundwater
across the study region is brackish in nature (Ross
et al. 2003), and freshwater species in this forest
may have very little ability to tolerate salts. Nev-
ertheless, even slight variation in salt tolerance
among species might preclude some species from
accessing water/nutrients from groundwater.
Thus, one important aspect of the observed trait
differentiation among coexisting species in old-
growth forest may be partitioning of alternative
sources of nitrogen among coexisting species.
However, current knowledge about nitrogen
cycling processes in the study area is very limited.

In some settings, trait differentiation among
coexisting species in a community may result
from dispersal limitation rather than environ-
mental differentiation (Hubbell 2006). However,
one may reason that dispersal limitation may not
be as important in explaining spatial pattern in
the study area, a contiguous area of 875 ha, pop-
ulated mostly by tree species with fleshy fruits
likely to be dispersed by birds and small animals
(Redwine et al. 2007, Ross et al. 2016). In their
seed dispersal activities, birds and animals move
easily across the whole forest exploiting most or
all available habitat (Humphrey 1988, Strong and
Bancroft 1994). Furthermore, a parallel study in
the same forest showed that trait–species rela-
tionships were not strong for dispersal traits (i.e.,
seed mass and number; Subedi 2017).

CONCLUSIONS

We report a key set of morphological, chemical,
and architectural traits that are important for
understanding the community assembly process in
the dry tropical forest of the Florida Keys. Species
traits in young stands are mostly associated with
resource acquisitive strategies, while old stands are
dominated by species with conservative traits. Our

results support the hypothesis that younger stands
in our study area are predominantly shaped by
environmentally driven processes, while old
stands are shaped by competitively driven pro-
cesses that lead to limiting similarity at the site
level. This seems to be caused by changes in abiotic
conditions such as soil nutrient, water, and light
availability, which favor more conservative strate-
gies of resource use as succession proceeds. Trees
in young stands (early-successional species)
emphasize nutrient and water acquisition as they
have less competition after disturbance. In con-
trast, trees from old stands (late-successional spe-
cies) compete with one another for resources as
stands age and become more diverse. The overall
trait similarities among the species present in these
forests suggest that they are mostly specialists on
the local environment, and species’ tolerances for
limiting resources such as nutrients and moisture,
and survival during wind disturbance may be
more important than competition for resources at
the regional scale.
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