Title

Vagus nerve stimulation may protect GABAergic neurons following traumatic brain injury in rats: An immunocytochemical study

Document Type

Article

Publication Date

1-12-2007

Abstract

Seizures and subclinical seizures occur following experimental brain injury in rats and may result from inhibitory neuron loss. This study numerically compares cortical and hippocampal glutamic acid decarboxylase (GAD) positive neurons between sham fluid percussion injury (FPI), FPI with sham Vagus Nerve Simulation (VNS), and FPI with chronic intermittent VNS initiated at 24 h post FPI in rats. Rats (n = 8/group) were prepared for immunocytochemistry of GAD at 15 days post FPI. Serial sections were collected and GAD immunoreactive neurons were counted in the hippocampal hilus and two levels of the cerebral cortex. Numbers of quantifiable GAD cells in the rostral cerebral cortices were different between groups, both ipsilateral and contralateral to the FPI. Post hoc analysis of cell counts rostral to the ipsilateral epicenter, revealed a significant 26% reduction in the number of GAD cells/unit area of cerebral cortex following FPI. In the FPI-VNS group, this percentage loss was attenuated to only an 8.5% reduction, a value not significantly different from the sham group. In the contralateral side of the rostral cerebral cortex, FPI induced a significant 24% reduction in GAD cells/unit area; whereas, the VNS-treated rats showed no appreciable diminution of GAD cells rostral to the contralateral epicenter. Hippocampal analysis revealed a similar reduction of GAD cells in the FPI group; however, unlike the cortex this was not statistically significant. In the FPI-VNS group, a trend towards increased numbers of hilar GAD cells was observed, even over and above that of the sham FPI group; however, this was also not statistically significant. Together, these data suggest that VNS protects cortical GAD cells from death subsequent to FPI and may increase GAD cell counts in the hippocampal hilus of the injured brain. © 2006 Elsevier B.V. All rights reserved.

DOI

10.1016/j.brainres.2006.09.073

First Page

157

Last Page

163

Volume

1128

Issue

1

Publication Title

Brain Research

ISSN

00068993

Comments

At the time of publication, Rodney W. Roosevelt was affiliated with Southern Illinois University.

This document is currently not available here.

COinS