Simulated Viral Infection in Early-life Alters Brain Morphology, Activity and Behavior in Zebra Finches (Taeniopygia guttata)

Document Type

Article

Publication Date

11-1-2018

Department

Biological Sciences

Abstract

Early-life immune challenges (ELIC) have long-term effects on adult behavior and brain development. ELIC studies on birds are still few, but they are epidemiologically crucial since birds are important hosts of many mosquito-borne viruses. In this study, we administered a viral infection mimicking agent, Polyinosinic: polycytidylic acid (Poly I:C), to nestling zebra finches on post-hatch day 14. When birds became sexually mature, their general activity (i.e., hopping, feeding behavior) and mosquito defense behaviors (i.e., hops, head movements, pecks, wing movements, foot movements, and scratches) were measured. Following behavioral trials, brains of male birds were collected for anatomical and histochemical analyses. Poly I:C challenge had sex-dependent effects on general activity and mosquito defense behaviors. When compared to control females, Poly I:C challenged females hopped and fed less often in their general activities, but hopped more often in the presence of mosquitoes. Poly I:C challenged males did not differ from control males in any behaviors. Brain analysis revealed that the nucleus taeniae of the amygdala (TnA) of Poly I:C challenged males were smaller in volume yet had more neurons expressing immediate-early gene proteins compared with controls, suggesting a more active TnA. These results suggest that immune challenges early in the life could have long-term effects on behaviors and brains of zebra finches, which may influence disease spread and fitness of individual birds.

DOI

10.1016/j.physbeh.2018.08.004

First Page

36

Last Page

46

Publication Title

Physiology and Behavior

This document is currently not available here.

Share

COinS