Output-feedback H quadratic tracking control of linear systems using reinforcement learning

Document Type

Article

Publication Date

2-1-2019

Department

Electrical Engineering

Abstract

This paper presents an online learning algorithm based on integral reinforcement learning (IRL) to design an output-feedback (OPFB) H∞ tracking controller for partially unknown linear continuous-time systems. Although reinforcement learning techniques have been successfully applied to find optimal state-feedback controllers, in most control applications, it is not practical to measure the full system states. Therefore, it is desired to design OPFB controllers. To this end, a general bounded L2-gain tracking problem with a discounted performance function is used for the OPFB H∞ tracking. A tracking game algebraic Riccati equation is then developed that gives a Nash equilibrium solution to the associated min-max optimization problem. An IRL algorithm is then developed to solve the game algebraic Riccati equation online without requiring complete knowledge of the system dynamics. The proposed IRL-based algorithm solves an IRL Bellman equation in each iteration online in real time to evaluate an OPFB policy and updates the OPFB gain using the information given by the evaluated policy. An adaptive observer is used to provide the knowledge of the full states for the IRL Bellman equation during learning. However, the observer is not needed after the learning process is finished. A simulation example is provided to verify the convergence of the proposed algorithm to a suboptimal OPFB solution and the performance of the proposed method. © 2017 John Wiley & Sons, Ltd.

DOI

10.1002/acs.2830

First Page

300

Last Page

314

Publication Title

International Journal of Adaptive Control and Signal Processing

Comments

At the time of publication, Rohollah Modhadam was affiliated with Missouri University of Science and Technology.

This document is currently not available here.

Share

COinS