A study of the non-parabolic hydrodynamic modelling of a sub-micrometre n+-n-n+ device
Document Type
Article
Publication Date
8-21-1997
Department
Mechanical Engineering
Abstract
The common assumptions for closure of the first three moment equations with non-parabolic band structure have led to many inconsistencies associated with the electron temperature, effective mass and heat flux. The assumptions are involved in the heat flux based on the Fourier law and in the electron temperature determined from the average kinetic and drift energies. The inconsistencies resulting from these assumptions are studied and illustrated for electrons in silicon with a non-parabolic energy band. A simple alternative by means of which to avoid the inconsistent assumptions and to truncate the hierarchy of the hydrodynamic equations with non-parabolic band structure is proposed. Instead of using the Fourier-law heat flux to close the hydrodynamic equations, the energy flux is separated into fluxes carried by average and random velocities. The proposed model and a Fourier-law-based hydrodynamic model, together with the Monte Carlo method, are applied to a silicon sub-micrometre n+-n-n+ diode with a non-parabolic band at various applied voltages. Effects on electron transport in the sub-micrometre device resulting from the assumptions of the Fourier-law heat flux and the electron temperature determined from the average kinetic and drift energies are investigated.
DOI
10.1088/0022-3727/30/16/013
First Page
2343
Last Page
2353
Publication Title
Journal of Physics D: Applied Physics
Recommended Citation
Cheng, M., Guo, L., Fithen, R. M., & Lou, Y. (1997). A study of the non-parabolic hydrodynamic modelling of a sub-micrometre n+-n-n+ device. Journal of Physics D: Applied Physics 30(16): 2343-2353. doi: 10.1088/0022-3727/30/16/013.
Comments
At the time of publication, Robert M. Fithen was affiliated with University of New Orleans.