Coupling of a nonlinear finite element structural method with a Navier-Stokes solver

Document Type

Article

Publication Date

2-1-2003

Department

Mechanical Engineering

Abstract

A new three-dimensional viscous aeroelastic solver is developed in the present work. A well validated full Navier-Stokes code is coupled with a nonlinear finite element plate model. Implicit coupling between the computational fluid dynamics and structural solvers is achieved using a subiteration approach. Computations of several benchmark static and dynamic plate problems are used to validate the finite element portion of the code. This coupled aeroelastic scheme is then applied to the problem of three-dimensional panel flutter. Inviscid and viscous supersonic results match previous computations using the same aerodynamic method coupled with a finite difference structural solver. For the case of subsonic flow, multiple solutions consisting of static, upward and downward deflections of the panel are discussed. The particular solution obtained is shown to be sensitive to the cavity pressure specified underneath the panel. © 2003 Published by Elsevier Science Ltd.

DOI

10.1016/S0045-7949(02)00390-5

First Page

75

Last Page

89

Publication Title

Computers and Structures

This document is currently not available here.

Share

COinS